Protocolo de processamento de imagens RGB aéreas para identificação de genótipos potenciais de milho em fase vegetativa

Autores

Palavras-chave:

Melhoramento de plantas, Índices de vegetação, Zea mays L

Resumo

Resumo: Objetivou-se avaliar um protocolo de imagens RGB, para identificação da produtividade de grãos do milho antes da maturidade fisiológica em região semiárida. Utilizou-se o DBC, com duas repetições para avaliar 50 genótipos de milho. Realizou-se dois voos em diferentes datas, 27 e 46 dias após o plantio (DAP) com alturas de 40, 60 e 80 m. Utilizou-se 29 índices de vegetação. A análise de variância evidenciou a variabilidade genética entre os genótipos, permitindo a seleção de materiais promissores. Com as repetibilidades dos índices de vegetação, determinou-se a melhor data para voo. As estimativas dos BLUP temporais, permitiram categorizar os materiais como sendo de alto ou baixo desempenho, considerando a média da produtividade de grãos e a distinção dos materiais mais produtivos durante o estágio fenológico vegetativo da cultura. Recomenda-se, portanto, a realização de voos com 27 DAP, a uma altura de 80 m. Os índices de vegetação TGI e Green demonstraram ser indicativos para previsão precoce do potencial produtivo dos materiais. Indica-se manter a área experimental livre de interferências bióticas e abióticas e conduzir voos adicionais, otimizando assim a fenotipagem por imagens aéreas.

Downloads

Não há dados estatísticos.

Biografia do Autor

Barbara Nascimento Santos, Universidade Federal de Sergipe (UFS)

Mestranda em Agricultura e Biodiversidade na Universidade Federal do Sergipe – UFS. E-mail: barbaranascimento2804@gmail.com. ORCID: https://orcid.org/0000-0002-1689-7399.

Nartênia Susane Costa Aragão, Universidade Federal de Sergipe (UFS)

Graduanda em Engenharia Agronômica na Universidade Federal do Sergipe – UFS. E-mail: nartenia.aragao@gmail.com. ORCID: https://orcid.org/0000-0003-3409-3236.

Mário Sérgio Rodrigues Barreto, Universidade Federal de Sergipe (UFS)

Graduando em Engenharia Agronômica na Universidade Federal do Sergipe – UFS. E-mail: mzs.esc@gmail.com. ORCID: https://orcid.org/0000-0002-4037-4328.

Henrique Rocha Azevedo Santos, Universidade Federal de Sergipe (UFS)

Graduando em Engenharia Agronômica na Universidade Federal do Sergipe – UFS. E-mail: rique999@academico.ufs.br.

Jacilene Francisca Souza Santos, Universidade Federal de Sergipe (UFS)

Doutoranda em Agricultura e Biodiversidade na Universidade Federal do Sergipe – UFS. E-mail: jacilenesantos_14@hotmail.com. ORCID: https://orcid.org/0000-0001-5109-3663.

José Jairo Florentino Cordeiro Junior, Universidade Federal de Sergipe (UFS)

Doutor em Engenharia Agrícola. Professor na Universidade Federal de Sergipe – UFS. E-mail: jairofcordeiro@academico.ufs.br. ORCID: https://orcid.org/0000-0002-1138-8309.

Gustavo Hugo Ferreira de Oliveira, Universidade Federal de Sergipe (UFS)

Doutor em Agronomia. Professor na Universidade Federal de Sergipe – UFS. E-mail: gustavooliveira@academico.ufs.br. ORCID: https://orcid.org/0000-0002-3839-6261.

Referências

ALVARES, C. A. et al. Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift. v. 22, n. 6, p. 711-728, 2013. Disponível em: http://dx.doi.org/10.1127/0941-2948/2013/0507. Acesso em: 22 jan. 2024.

ANDERSON, S. L. et al. Prediction of maize grain yield before maturity using improved temporal height estimates of unmanned aerial systems. The Plant Phenome Journal, v. 2, n. 1, p. 1-15, 2019. Disponível em: https://doi.org/10.2135/tppj2019.02.0004. Acesso em: 22 jan. 2023.

ASADZADEH, S.; SOUZA FILHO, C. R. Investigating the capability of WorldView-3 superspectral data for direct hydrocarbon detection. Remote Sensing of Environment, v. 173, p. 162-173, 2016. Disponível em: https://doi.org/10.1016/j.rse.2015.11.030. Acesso em: 22 jan. 2024.

BENDIG, J. et al. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, v. 39, p. 79-87, 2015. Disponível em: https://doi.org/10.1016/j.jag.2015.02.012. Acesso em: 22 jan. 2024.

BURGOS-ARTIZZU, X. P. et al. Real-time image processing for crop/weed discrimination in maize fields. Computers and Electronics in Agriculture, v. 75, n. 2, p. 337-346, 2011. Disponível em: https://doi.org/10.1016/j.compag.2010.12.011. Acesso em: 22 jan. 2024.

CECCATO, P. et al. Detecting vegetation leaf water content using reflectance in the optical domain. Remote sensing of environment, v. 77, n. 1, p. 22-33, 2001. Disponível em: https://doi.org/10.1016/S0034-4257(01)00191-2. Acesso em: 22 jan. 2024.

CONAB. Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira de Grãos, Brasília, DF, v. 10, safra 2022/23, n. 8 oitavo levantamento, maio 2023. Disponível em: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos. Acesso em 15 mai. 2023.

FARIAS NETO, J. T.; YOKOMIZO, G.; BIANCHETTI, A. Coeficientes de repetibilidade genética de caracteres em pupunheira. Revista Brasileira de Fruticultura, v. 24, p. 731-733, 2002. Disponível em: https://doi.org/10.1590/S0100-2945200200030004. Acesso em: 22 jan. 2024.

FURUYA, D. E. G. et al. Prediction of insect-herbivory-damage and insect-type attack in maize plants using hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, v. 105, p. 102608, 2021. Disponível em: https://doi.org/10.1016/j.jag.2021.102608. Acesso em: 22 jan. 2024.

GITELSON, A. A. et al. Novel algorithms for remote estimation of vegetation fraction. Remote sensing of Environment, v. 80, n. 1, p. 76-87, 2002. Disponível em: https://doi.org/10.1016/S0034-4257(01)00289-9. Acesso em: 22 jan. 2024.

GUIJARRO, M. et al. Automatic segmentation of relevant textures in agricultural images. Computers and Electronics in Agriculture, v. 75, n. 1, p. 75-83, 2011. Disponível em: https://doi.org/10.1016/j.compag.2010.09.013. Acesso em: 22 jan. 2024.

GURGEL, F. L.; FERREIRA, D. F.; SOARES, A. C. S. O coeficiente de variação como critério de avaliação em experimentos de milho e feijão. Belém, PA: Embrapa Amazônia Oriental-Boletim de Pesquisa e Desenvolvimento, p. 80, 2013. Disponível em: https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/955896. Acesso: em 15 mai. 2023.

HAGUE, T.; TILLETT, N. D.; WHEELER, H. Automated crop and weed monitoring in widely spaced cereals. Precision Agriculture, v. 7, p. 21-32, 2006. Disponível em: https://doi.org/10.1007/s11119-005-6787-1. Acesso em: 22 jan. 2024.

HERZIG, P.; et al. Evaluation of RGB and Multispectral Unmanned Aerial Vehicle (UAV) Imagery for High-Throughput Phenotyping and Yield Prediction in Barley Breeding. Remote Sensing, v. 13, n. 14, p. 2670, 7 jul. 2021. Disponível em: https://doi.org/10.3390/rs13142670. Acesso em: 22 jan. 2024.

HUNT, E. R. et al. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precision Agriculture, v. 6, p. 359-378, 2005. Disponível em: https://doi.org/10.1007/s11119-005-2324-5. Acesso em: 22 jan. 2024.

HUNT JR, E. R. et al. Remote sensing leaf chlorophyll content using a visible band index. Agronomy journal, v. 103, n. 4, p. 1090-1099, 2011. Disponível em: https://doi.org/10.2134/agronj2010.0395. Acesso em: 22 jan. 2024.

HU, P. et al. Phenomic selection and prediction of maize grain yield from near‐infrared reflectance spectroscopy of kernels. The Plant Phenome Journal, v. 3, n. 1, p. e20002, 2020. Disponível em: https://doi.org/10.1002/ppj2.20002. Acesso em: 22 jan. 2024.

LANE, H. M. et al. Phenomic selection and prediction of maize grain yield from near‐infrared reflectance spectroscopy of kernels. The Plant Phenome Journal, v. 3, n. 1, p. e20002, 2020. Disponível em: https://doi.org/10.1002/ppj2.20002. Acesso em: 22 jan. 2024.

LIU, J. G.; MOORE, J. McM. Hue image RGB colour composition. A simple technique to suppress shadow and enhance spectral signature. International Journal of Remote Sensing, v. 11, n. 8, p. 1521-1530, 1990. Disponível em: https://doi.org/10.1080/01431169008955110. Acesso em: 22 jan. 2024.

LOUHAICHI, M; BORMAN, M. M.; JOHNSON, D. E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International, v. 16, n. 1, p. 65-70, 2001. Disponível em: https://doi.org/10.1080/10106040108542184. Acesso em: 22 jan. 2024.

KATAOKA, T. et al. Crop growth estimation system using machine vision. In: Proceedings 2003 IEEE/ASME international conference on advanced intelligent mechatronics (AIM 2003). IEEE, v. 2, 2003. p. b1079-b1083. Disponível em: https://doi.org/10.1109/AIM.2003.1225492. Acesso em: 22 jan. 2024.

KAWASHIMA, S.; NAKATANI, M. An algorithm for estimating chlorophyll content in leaves using a video camera. Annals of Botany, v. 81, n. 1, p. 49-54, 1998. Disponível em: https://doi.org/10.1006/anbo.1997.0544. Acesso em: 22 jan. 2024.

MAES, W. H.; STEPPE, K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends in plant science, v. 24, n. 2, p. 152-164, 2019. Disponível em: https://doi.org/10.1016/j.tplants.2018.11.007. Acesso em: 22 jan. 2024.

MEYER, G. E. et al. Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images. Computers and electronics in agriculture, v. 42, n. 3, p. 161-180, 2004. Disponível em: https://doi.org/10.1016/j.compag.2003.08.002. Acesso em: 22 jan. 2024.

MEYER, G. E.; NETO, J. C. Verification of color vegetation indices for automated crop imaging applications. Computers and electronics in agriculture, v. 63, n. 2, p. 282-293, 2008. Disponível em: https://doi.org/10.1016/j.compag.2008.03.009. Acesso em: 22 jan. 2024.

PEREZ, A. J. et al. Colour and shape analysis techniques for weed detection in cereal fields. Computers and electronics in agriculture, v. 25, n. 3, p. 197-212, 2000. Disponível em: https://doi.org/10.1016/S0168-1699(99)00068-X. Acesso em: 22 jan. 2024.

QIU, R. et al. Detection of the 3D temperature characteristics of maize under water stress using thermal and RGB-D cameras. Computers and Electronics in Agriculture, v. 191, p. 106551, 2021. Disponível em: https://doi.org/10.1016/j.compag.2021.106551. Acesso em: 22 jan. 2024.

SANTANA, D. C. et al. UAV-based multispectral sensor to measure variations in corn as a function of nitrogen topdressing. Remote Sensing Applications: Society and Environment, v. 23, p. 100534, 2021. Disponível em:https://doi.org/10.1016/j.rsase.2021.100534. Acesso em: 22 jan. 2024.

SANTOS, E. F. N.; SOUSA, I. F. D.; LEITE, I. V. Regiões Homogêneas em Sergipe Agrupadas Através dos índices Climáticos. Revista Brasileira de Meteorologia, v. 37, n. 4, p. 477–489, out. 2022. Disponível em: http://dx.doi.org/10.1590/0102-77863740053. Acesso em: 22 jan. 2024.

SILVA, A. F.; REGITANO NETO, A.; NETO, A. R. As principais culturas anuais e bianuais na agricultura familiar. Agricultura Familiar, p. 45, 2019. Acesso em: 22 jan. 2024.

TETILA, E. C. et al. Detection and classification of soybean pests using deep learning with UAV images. Computers and Electronics in Agriculture, v. 179, p. 105836, 2020. Disponível em: https://doi.org/10.1016/j.compag.2020.105836. Acesso em: 22 jan. 2024.

TUCKER, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, v. 8, n. 2, p. 127-150, 1979. Disponível em: https://doi.org/10.1016/0034-4257(79)90013-0. Acesso em: 22 jan. 2024.

WOEBBECKE, D. M. et al. Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE, v. 38, n. 1, p. 259-269, 1995. Disponível em: https://doi.org/10.13031/2013.27838. Acesso em: 22 jan. 2024.

WOEBBECKE, D. M. et al. A. Shape features for identifying young weeds using image analysis. Transactions of the ASAE, v. 38, n. 1, p. 271-281, 1995. Disponível em: https://doi.org/10.13031/2013.27839. Acesso em: 22 jan. 2024.

WILBER, A. L.; CZARNECKI, J. M. P.; MCCURDY, J. D. An ArcGIS Pro workflow to extract vegetation indices from aerial imagery of small plot turfgrass research. Crop Science, 62, 503–511, 2022. Disponível em: https://doi.org/10.1002/csc2.20669. Acesso em: 22 jan. 2024.

ZARCO-TEJADA, P. J. et al. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment, v. 99, n. 3, p. 271-287, 2005. Disponível em: https://doi.org/10.1016/j.rse.2005.09.002. Acesso em: 22 jan. 2024.

Downloads

Publicado

2012-12-31

Como Citar

NASCIMENTO SANTOS, Barbara; COSTA ARAGÃO, Nartênia Susane; RODRIGUES BARRETO, Mário Sérgio; ROCHA AZEVEDO SANTOS, Henrique; SOUZA SANTOS, Jacilene Francisca; FLORENTINO CORDEIRO JUNIOR, José Jairo; FERREIRA DE OLIVEIRA, Gustavo Hugo. Protocolo de processamento de imagens RGB aéreas para identificação de genótipos potenciais de milho em fase vegetativa. Revista Eletrônica Competências Digitais para Agricultura Familiar, Tupã, São Paulo, Brasil, v. 9, n. 2, p. 149–173, 2012. Disponível em: https://owl.tupa.unesp.br/recodaf/index.php/recodaf/article/view/178. Acesso em: 14 jun. 2024.